Jul 2025
Languages
- rust
- [https://sharnoff.io/blog/why-rust-compiler-slow](Why is the Rust compiler so slow?)
- debug , LTO, optimization
RUSTFLAGS="-Cllvm-args=-inline-threshold=50 -Cllvm-args=-inlinedefault-threshold=50 -Cllvm-args=-inlinehint-threshold=50"
- Reducing inlining with LLVM args;
- Breaking up expensive functions in the main crate; and
- Removing generics from dependencies to prevent needing to compile it in the main crate Timeline:
- We started at ~175s
- Disabling LTO (and debug symbols!) got us to 51s (-71%)
- Changing to opt-level = 1 on the final crate got us to 48.8s (-4%)
- Reducing inlining with -C llvm-args got us to 40.7s (-16%)
- Local changes got us to 37.7s (-7%)
- Changes with dependencies got us to 32.3s (-14%)
- Enabling -Zshare-generics got us to 29.1s (-10%)
- And switching away from alpine got us to 9.1s (-69%)
- Leaktracer: A Rust allocator to trace memory allocations
- [https://sharnoff.io/blog/why-rust-compiler-slow](Why is the Rust compiler so slow?)
- zig
- Java
- 小红书JDK升级带来10%整体性能提升,这份升级指南收好了! 千年的JDK8问题
- G1: Parallel Full GC for G1
- G1: Initiating Heap Occupancy Percent
- G1: 提前回收大对象 总的感觉来说,对大型系统,Java的GC仍然带来了一定程度的不可控因素,所有的 GC 调优其实都是在这个不确定性上跳舞,获得或多或少的改进, 但仍然是存在不确定性。这就是在一个低维度的挣扎。(不过,作为应用层的编程语言,不采纳 GC 的成本可能更高 )
- Java 的优点和缺点可能是现在的生态,在不需要那么臃肿的场景下,可能会越来越臃肿。
- 从 Java 迁移到 Swift: 密码监控服务
- 小红书JDK升级带来10%整体性能提升,这份升级指南收好了! 千年的JDK8问题
MPP & OLAP
Web & Frontend
-
Dashboard That Works: A Step-by-Step Guide for Startups in 2025
A truly functional dashboard:
- GOALS, DATA, PEOPLE, LOGIC
- analysts, designers, developers
- work for business, not just look pretty
- Don't try to make a dashboard for everyone
- define use cases and users
- identify key metrics
- prepare data
- sketch a rough layout
- get user feedback
- write a solid brief for designers
- find the right builders
- Launch, watch, improve
-
[fastplotlib](a plotting library built on WGPU)
- based on [pygfx](a python-graphics library visualization framework on WGPU) 思考:结合 Vega, Pixi, D3 等框架,思考一种描述 visualization 的最佳方式。
- Vega:使用 JSON 的方式,缺乏类型化约束,不便于理解、使用,部份的能力过于糖化。
- 使用多维空间的方式来理解 visualization
- 将数据(关系数据、多维数据)映射到(可视化)多维空间。
- 使用 react 的方式来理解 interact
- 更好的表示语言?
- JSON based
- more datatype: date, interval, float, decimal, more via regexp"..." style
- JSON constructor: Color { r g b }
- functional constructor: Color(r, g, b), with fixed parameter and named parameter
- enum literal. .RED instead of Color.RED
- reference spec: global reference, document reference, scoped reference.
-
AntV G2 粗览一下文档和示例,G2 的概念与 vega 时非常相似的,提供2种 API: 命令式 和 DSL 式。
LLM & Agents
- LLM Powered Autonomous Agents
- AutoGPT
- AnyTool
- HuggingGPT
- Understanding the planning of LLM agents: A survey
- https://github.com/AntonOsika/gpt-engineer
- JoyAgent
- Gaia benchmark: a benchmark for General AI Assistants